• Канал RSS
  • Обратная связь
  • Карта сайта

Статистика коллекции

Детальная статистика на
16 Ноября 2024 г.
отображает следующее:

Загадок:

10951+0

Коллекция Загадок

Загадки на Логику

Загадки - Обманки

Загадки Авторские

Загадки Алкогольные

Загадки Алфавитные

Загадки Анаграммы

Загадки Антифразы

Загадки Библейские

Загадки в Головоломках

Загадки в Стихах с Нерифмованными Отгадками

Загадки в Стихах с Отгадками в Рифму

Загадки Взрослые

Загадки Вкусные

Загадки Данетки

Загадки Детские

Загадки Истории

Загадки Киношные

Загадки Лесные

Загадки Математические

Загадки Музыкальные

Загадки на Смекалку

Загадки Новогодние

Загадки о Домашних Животных

Загадки о Доме

Загадки о Еде

Загадки о Животных

Загадки о Зданиях

Загадки о Приборах

Загадки о Принцессах

Загадки о Природе Фольклорные

Загадки о Растениях

Загадки о Рыбалке

Загадки о Семье

Загадки о Сказках

Загадки о Транспорте

Загадки о Химии

Загадки о Цветах

Загадки о Человеке

Загадки об Инструментах

Загадки об Одежде

Загадки об Окружающем мире

Загадки Парикмахерские

Загадки Политические

Загадки Пошлые

Загадки Прикольные

Загадки про Быт

Загадки про Вещи

Загадки про Времена года

Загадки про Время

Загадки про Грибы

Загадки про Космос

Загадки про Куханную утварь и посуду

Загадки про Насекомых

Загадки про Письмо

Загадки про Профессии

Загадки про Птиц

Загадки про Транспорт

Загадки про Цифры

Загадки Ребусы

Загадки Ребусы «Многоликое число»

Загадки Ребусы для детей

Загадки Ребусы для малышей

Загадки Ребусы для Школьников

Загадки Ребусы по информатике

Загадки Ребусы по математике

Загадки Ребусы по экономике

Загадки Ребусы-Реки

Загадки Русские Народные

Загадки Русско-Народные

Загадки с Картинками

Загадки с Подвохом

Загадки с Хитрым Ответом

Загадки Свадебные

Загадки Словесные

Загадки Сложные

Загадки Смешные

Загадки Спортивные

Загадки Туалетные

Загадки Фруктовые

Загадки Христианские

Загадки Школьные

Загадки Шуточные

Загадки Эротические

Коллекция Загадок
[ Начало раздела | 19 Новых Загадок | 19 Случайных Загадок | 19 Лучших Загадок ]



Загадки на Логику
Загадка № 1220
Дата: 31.03.2010, 23:19
Имеется набор из 1999 монет. Известно, что 1410 из них - фальшивые. Фальшивая монета по весу отличается на 1 г от подлинной, причем одни фальшивые монеты могут быть легче, а другие тяжелее подлинных. У нас есть чашечные весы, которые умеют показывать разницу в весе. Как за одно взвешивание определить подлинность любой монеты из набора?

(Ответ: Взвешиваем все монеты кроме этой и смотрим на разность в весе. Обозначим вес нормальной монеты как N, тогда все монеты будут весить либо 1998*N+2x.)

Загадка № 1219
Дата: 31.03.2010, 23:18
А вот задача похожая на предыдущую, но немного сложнее: В аптеку поступило сильнодействующее лекарство - 8 упаковок по 150 таблеток. Следом пришло сообщение, что в этой партии есть несколько упаковок с бракованными таблетками - их вес на 1 мг больше нормальной дозы. Как за одно взвешивание выявить все упаковки с бракованными таблетками? Упаковки можно вскрывать.

(Ответ: Следует учинить непересекающиеся подмножества таблеток от разных упаковок: взять из первой упаковки одну таблетку, из второй - две, из третьей - четыре, из четвёртой - восемь, из пятой - 16, из шестой - 32, из седьмой - 64, из восьмой - 128. Всё это взвесить. Вычесть из полученного веса идеальный вес (идеальный вес каждой таблетки известен из документации, но можно обойтись и без него - подумайте как). Полученный излишек веса (он уже нормализован за счёт единичного излишка веса каждой таблетки) перевести в двоичный вид (ведь мы сформировали подмножества по двоичному закону). В этом числе номера разрядов, равные единице, и будут показывать номера бракованных упаковок)

Загадка № 1218
Дата: 31.03.2010, 23:18
Имеется 100 серебряных монет разных размеров и 101 золотая монета также разных размеров. Если у одной монеты размер больше, чем у другой, то она и больше весит, но это верно только для монет, сделанных из одного и того же металла. Все монеты можно легко упорядочить по размерам на глаз. Отличить золота от серебра можно тоже :-). Как за 8 взвешиваний определить, какая монета из всех 201 штук занимает по весу ровно 101-е место? Все 201 монеты также различны по весу. Весы с двумя чашками, как обычно.

(Ответ: Раскладываем в два ряда все монеты в порядке возрастания размера: золотые отдельно, серебряные отдельно. Пусть первая по счету в каждом ряду монета самая большая (и тяжелая).
Среднюю по весу монету можно найти, последовательно взвешивая срединные монеты каждой из оставшихся линеек.
1) взвешиваем 51-ю золотую монету и 50-ю серебряную. Если первая тяжелее, то искомая монета находится где-то среди 52-101 золотой и 1-50 серебряной. Если легче, то искомая монета находится где-то среди 1-51 золотой и 51-100 серебряной. То есть, 51+50 монет. Остальные можно отложить.
2) взвешиваем опять срединные монеты. Так как число вариантов растет в геометрической прогрессии, буду рассматривать только итоги ;) Из 51+50 монет выбираем сравниваем 25 и 26 монеты. Остается 26+25 монет.
3) Взвешиваем 13 и 13 монеты. Остается 13+13 или 13+12. Далее буду рассматривать только случай 13+13, 13+12 аналогично.
4) Взвешиваем 7 и 7. Остается 7+7.
5) Взвешиваем 4 и 3. Остается 4+3.
6) Здесь могу поподробнее, так как монет осталось мало. Пусть остались золотые монеты 1234 и серебряные ABC (все в порядке возрастания). Взвешиваем 2 и B. Если 2>B, то средняя монета какая-то из 34AB, если нет, то из 12C. Рассмотри первый случай.
7) Взвешиваем 3 и A.
8а) если 3
8б) если 3>A, то взвешиваем 4 и A. Какая больше, та и искомая)

Загадка № 1217
Дата: 31.03.2010, 23:16
Имеется 13 монет, из них ровно одна фальшивая, причем неизвестно, легче она настоящих или тяжелее. Требуется найти эту монету за три взвешивания. Весы - стандартные для задач этого типа: две чашечки без гирь.

(Ответ: Отложим в сторону тринадцатую монету, а остальные обозначим следующим образом: FAKE MIND CLOT.
Теперь взвешиваем одну четверку против другой (буквы обозначают монеты, входящие в каждую четверку): MA DO - LIKE, ME TO - FIND, FAKE - COIN. Теперь совершенно просто найти фальшивую монету, если она входит в эти двенадцать монет. К примеру, если результаты взвешивания были: слева легче, равно, слева легче, то фальшивой может быть только монета "A", которая легче других.
А что если фальшивой окажется все-таки отложенная нами, тринадцатая монета? Все очень просто: в этом случае при всех трёх взвешиваниях весы будут сбалансированы. К сожалению в этом случае нам не узнать легче или тяжелее тринадцатая монета, но в условии такого требования и не было)

Загадка № 1216
Дата: 31.03.2010, 23:15
Среди 101 одинаковых по виду монет одна фальшивая, отличающаяся по весу. Как с помощью чашечных весов без гирь за два взвешивания определить, легче или тяжелее фальшивая монета? Hаходить фальшивую монету не требуется.

(Ответ: Взвешиваешь 50 и 50 монет:
1) Равенство:
Беpем оставшуюся монету и ставим ее в левую кучку вместо одной из имеющихся там:
1.1 Левая кучка тяжелее => фальшивая монета тяжелее.
1.2 Левая кучка легче => фальшивая монета легче.

2) Hеpавенство:
Беpем более тяжелую кучку и разбиваем ее на две кучки по 25 монет.
2.1 Вес кучек одинаковый => фальшивая монета легче.
2.2 Вес кучек неодинаковый => фальшивая монета тяжелее)

Загадка № 1215
Дата: 31.03.2010, 23:15
Три рубля рублями, рубль пятаками, три копейки по копейке рубль да пятак....

(Ответ: 5 руб. 8 коп)

Загадка № 1214
Дата: 31.03.2010, 23:15
Из пункта А в пункт Б выехали 2 поезда, в одном состав 4 вагона и едет он со скоростью 60 км\ч, а другой 7 вагонов и 70 км\ч. Скока весит килограмм картошки, если козырь-буби?

(Ответ: 1 килограмм)

Загадка № 1213
Дата: 31.03.2010, 23:14
У барона Мюнхгаузена есть 8 внешне одинаковых гирек весом 1 г, 2 г, 3 г, ..., 8 г. Он помнит, какая из гирек сколько весит, но граф Склероз ему не верит. Сможет ли барон провести одно взвешивание на чашечных весах, в результате которого будет однозначно установлен вес хотя бы одной из гирь?

(Ответ: Да. 7+8 = 1+2+3+4+5, остается 6)

Загадка № 1212
Дата: 31.03.2010, 23:14
На столе лежит десять пронумерованных шляп. В каждой шляпе лежит по десять золотых монет. В одной из шляп находятся фальшивые монеты. Настоящая весит 10 граммов, а поддельная только 9. В помощь даны весы со шкалой в граммах. Как определить в какой из шляп находятся фальшивые монеты, используя весы только для одного взвешивания? Весы могут взвешивать не более 750 грамм.

(Ответ: Легко! Из первой шляпы берем 1 монету, из второй - 2, из третьей - 3 и т.д. Все это взвешиваем и отнимаем результат от идеального веса (в нашем случае 55Смайл - 10=550 грамм). Получившееся число будет совпадать с номером шляпы с фальшивыми монетами)

Загадка № 1211
Дата: 31.03.2010, 23:14
Эта история случилась давным-давно, еще во времена крестовых походов. Один из рыцарей был захвачен мусульманами в плен и предстал перед их предводителем - султаном Саладином, который объявил, что освободит пленника и его коня, если получит выкуп в 100 тысяч золотых монет. "О, великий Саладин, - обратился тогда к султану рыцарь, у которого за душой не было ни гроша, - ты лишаешь последней надежды. У меня на родине мудрому и находчивому пленнику дается шанс выйти на свободу. Если он решит заданную головоломку, его отпускают на все четыре стороны, если нет - сумма выкупа удваивается!"
"Да будет так, - ответил Саладин, и сам обожавший головоломки. - Слушай же. Тебе дадут двенадцать золотых монет и простые весы с двумя чашками, но без гирь. Одна из монет фальшивая, однако неизвестно, легче она или тяжелее настоящих. Ты должен найти ее всего за три взвешивания. Не справишься с задачей до утра - пеняй на себя!" А вы смогли бы выкрутиться?

(Ответ: Эта задача была блестяще разобрана К. Л. Стонгом в майском номере журнала Scientific American за 1955 год. Одно из ее решений (а их довольно много) связано с троичной системой. Сначала запишите все числа от 1 до 12 в троичной системе. Замените в каждом числе цифру 2 на 0, а 0 на 2 и запишите рядом результат. У вас получится три столбца чисел:

1 001 221
2 002 220
3 010 212
4 011 211
5 012 210
6 020 202
7 021 201
8 022 200
9 100 122
10 101 121
11 102 120
12 110 112

Внимательно изучив эти числа, вы обнаружите все числа, в которых встречаются сочетания 01, 12, 20. Каждой из двенадцати монет поставим в соответствие одно из этих чисел.
При первом взвешивании на левую чашу весов кладем четыре монеты, обозначенные числами, которые начинаются с 0, а на правую чашу весов кладем те четыре монеты, которым соответствуют числа, начинающиеся с 2. Если монеты уравновесят друг друга, вы можете утверждать, что число, которое отвечает фальшивой монете, начинается с 1. Если перевесит левая чашка, то искомое число начинается с 0, а если правая - то с 2.
Взвешивая монеты второй раз, их надо распределять в зависимости от средней цифры. Если в центре стоит 0, монета кладется на левую чашу, если 2 - на правую. Вторая цифра числа, обозначающего фальшивую монету, определяется точно так же, как определялась его первая цифра при первом взвешивании.
Производя последнее взвешивание, вы кладете налево те монеты, которые обозначены числами, оканчивающимися на 0, а монеты, соответствующие числам, имеющим на конце 2, вы кладете на правую чащу весов. Таким образом вы узнаете последнюю цифру нужного вам числа)

Загадка № 1210
Дата: 31.03.2010, 23:13
Имеется 2N пронумерованных монет, причем: все настоящие монеты весят одинаково, все фальшивые также весят одинаково, фальшивая монета легче настоящей. монеты с номерами от 1 до N настоящие, а монеты с номерами от N+1 до 2N - фальшивые. Из этих двух утверждений судья знает только первое, а эксперт - оба.

Как эксперту за три взвешивания на чашечных весах без гирь убедить судью в справедливости второго утверждения?
a: N=7
b: N=9

Задача "a" предлагалась на одной из Всесоюзных мат. олимпиад в 1970-х годах. С тех пор число N=7 (и в общем случае, N=2^K-1 для K взвешиваний) считалось не улучшаемым. И тем не менее, это не так. Улучшение (задача "b") придумано С. Токаревым в 1997 году.

(Ответ:
a) 1) Эксперт взвешивает монеты 1 и 8. (1 > 8)
Судья убеждается, что 8 - фальшивая.

2) Эксперт взвешивает 1+8 и 9+10. (1+8 > 9+10)
Судья убеждается, что 9+10 легче, чем одна фальшивая и одна настоящая. Следовательно, он заключает, что и 9, и 10 - фальшивые.

3) Эксперт взвешивает 1+8+9+10 и 11+12+13+14.
Аналогично, судья может сделать вывод о всех монетах 11-14. Заметим, что настоящая монета нужна ровно одна
b) Предварительное действие: эксперт группирует монеты в такие три кучки: А (1, 2; 10, 11); Б (3, 4, 5; 12, 13, 14); В (6, 7, 8, 9; 15, 16, 17, 18); В каждой кучке поровну настоящих и фальшивых монет, эксперту это известно, а судье будет доказано в результате взвешиваний.
1) На левую чашку весов кладутся настоящие монеты из кучки А и фальшивые из кучки Б, а на правую - фальшивые из кучки А и настоящие из кучки Б. Правая чашка тяжелее левой.

2) На левую чашку весов кладутся настоящие монеты из кучки Б и фальшивые из кучки В, а на правую - фальшивые из кучки Б и настоящие из кучки В. Правая чашка тяжелее левой.

3) На левую чашку весов кладутся настоящие монеты из кучки В и фальшивые из кучек А и Б, а на правую - фальшивые из кучки В и настоящие из кучек А и Б. Правая чашка тяжелее левой.
Обозначим x разность весов настоящих и фальшивых монет кучки A, т.е. (1+2) -(10+11), y - то же для кучки Б, то есть (3+4+5)-(12+13+14), z - (6+7+8+9)-(15+16+17+18).

Наши взвешивания доказали судье следующие три неравенства:
y > x; z > y; x+y > z.

Поскольку x,y,z - целые числа, то строгие неравенства можно заменить на нестрогие:
y >= x+1
z >= y+1
x+y >= z+1.

Отсюда: x+y >= y+2 => x >= 2;
x+y >= x+3 => y >= 3;
2z >= x+y+3 >= z+4 => z >= 4.

С другой стороны, очевидно, что разность между K настоящими монетами и K неизвестными монетами не может быть больше, чем K, причем равенство бывает только тогда, когда все неизвестные монеты - фальшивые. Это и доказывает судье все что надо...
Заметим, что и в этом случае 9 настоящих монет не нужно! А сколько их нужно на самом деле? Подумайте...
Еще более интересная задача - для четырех взвешиваний. Алгоритм из задачи а) дает возможность эксперту доказать фальшивость 15 монет. Обобщение алгоритма Токарева позволяет улучшить эту оценку до 27)

Загадка № 1209
Дата: 31.03.2010, 23:12
Имеется 8 с виду одинаковых монет. Одна из них фальшивая и известно, что она легче настоящей. Как с помощью всего лишь двух взвешиваний найти фальшивую монету? В Вашем распоряжении только лабораторные весы, которые показывают только больше-меньше.

(Ответ: Делим монеты на две равные кучки. Из каждой кучки берем по 3 монеты, кладем на весы и взвешиваем. Если вес одинаковый то взвешиваем оставшиеся 1и 1 монеты и выявляем фальшивую (более легкую). Если же одна группа из трех монет легче другой, значит там есть фальшивая монета. Оставляем более легкую группу из трех монет и кладем на весы 1и 1 и действуем по предыдущему алгоритму: если вес одинаков, значит фальшива третья, а если нет то та которая легче)

Загадка № 1208
Дата: 31.03.2010, 21:50
Что станет с зеленым утесом, если он упадет в Красное море?

(Ответ: Ничего, разве что немного раскрошится от падения, или утонет)

Загадка № 1206
Дата: 31.03.2010, 21:49
Два человека играли в шашки. Каждый сыграл по пять партий и выграл по пять раз. Это возможно?

(Ответ: Угу и проиграл тоже 5. В ничью играли. Также возможно, что они играли не друг с другом)

Загадка № 1205
Дата: 31.03.2010, 21:48
Как спрыгнуть с десятиметровой лестницы и не ушибиться?

(Ответ: Спрыгнуть с низщей ступеньки)

Загадка № 1204
Дата: 31.03.2010, 21:48
Что не имеет длины, глубины, ширины, высоты, а можно измерить?

(Ответ: Кучу всего: скорость, время, работу, напряжение, IQ и тд)

Загадка № 1203
Дата: 31.03.2010, 21:48
Что не имеет длины, глубины, ширины, высоты, а можно измерить?

(Ответ: Кучу всего: скорость, время, работу, напряжение, IQ и тд)

Загадка № 1201
Дата: 31.03.2010, 21:12
Верблюд в течение одного часа выдерживает ношу в 10 пудов. В течение какого времени он выдержит ношу в 1000 пудов?
(Ответ: Скорей всего верблюд не выдержит ношу в 1000 пудов)

Загадка № 1199
Дата: 31.03.2010, 20:41
Сколько горошин может войти в один стакан?
(Ответ: Нисколько, т.к. горошины не ходят)

Перепубликация материалов данной коллекции-загадок.
Разрешается только с обязательным проставлением активной ссылки на первоисточник!
© 2010